Notes

ADDITIONAL COCHINMICINS FROM A Microbispora sp.

Y. K. TONY LAM, DEBORAH L. ZINK, DAVID L. WILLIAMS, Jr.[†] and BRUCE W. BURGESS

Merck Research Laboratories, Rahway, New Jersey 07065, U.S.A., and [†]West Point, Pennsylvania 19486, U.S.A.

(Received for publication June 15, 1992)

Recently, we have described the discovery of cochinmicins I (1), II (2) and III (3) (Fig. 1) as endothelin antagonists from the fermentation of a *Microbispora* sp., ATCC $55140^{1,2}$. Subsequently, in working with a directly scaled up fermentation, we found two additional components, IV (4) and V (5), in sufficient amounts for characterization. In this paper, we will present the isolation as well as physico-chemical and biochemical characterization of these two new metabolites.

In the present fermentation, the seed nutrient and production media employed were the same as those reported previously¹⁾. A two stage seed method of 4 and then 0.8% inoculum was used with incubation at 28°C and 220 rpm for 96 and 72 hours, respectively. Production of cochinmicins was carried out in 75-liter stainless steel fermenters containing 50 liters of the production medium. An inoculum of 3.0% was used. The fermentation was carried out at 25°C and pH 6.4~7.3, under an aeration of 15 liters/minute and a stirrer speed of $400 \sim 500$ rpm. Production of 2 was followed by HPLC analysis. A time course of this fermentation in a 75-liter fermenter is shown in Fig. 2. Production of 2 starts during log phase and reaches a maximum at 9 to 10 days of fermentation followed by a sharp decline to 40% of the peak level in 24 hours.

The whole broth from two fermenters (100 liters) was immediately extracted with methylethyl ketone (MEK, 2×100 liters). Flash evaporation of the MEK layer to dryness under reduced pressure at $<40^{\circ}$ C gave 245 g of crude extract. This crude extract was mixed with CH₂Cl₂ (850 ml) and adsorbed on to an open column of 2.5 kg Silica gel 60 (E. Merck, $0.2 \sim 0.5$ mm particle size) in the same solvent. Stepwise gradient elution with 7, 25 and 24 liters of 0, 5 and 10% MeOH-CH₂Cl₂,

respectively, afforded 32.6 g of cochinmicin enriched fraction in the 10% MeOH - CH_2Cl_2 effluent. In this exercise, the enriched fraction was purified as two

Fig. 2. Time course of production of cochinmicin II (2) in a 75-liter fermenter.

 \circ pH, • 2, • dissolved oxygen, \triangle packed cell volume.

	4	5
Molecular formula	$C_{46}H_{46}N_7O_{13}Cl$	C ₄₆ H ₄₇ N ₇ O ₁₂
HRFAB-MS $((M+H)^+ m/z)$		
Found:	940.2921	890.3360
Calcd:	940.2920	890.3361
$[\alpha]_{\mathbf{D}}^{23}$	$+30.0^{\circ}$ (c 0.1 in MeOH)	$+20.0^{\circ}$ (c 0.1 in MeOH)
UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (E ¹ ₁ cm)	214 (485), 229 (sh, 240), 274 (234)	214 (489), 230 (sh, 237), 270 (224)
FT-IR (ZnSe) v_{max} cm ⁻¹	3309, 1738, 1661, 1607, 1525	3302, 1739, 1661, 1555, 1516
HPLC ^a Rt (minutes)	4.4	3.3
[¹²⁵ I]Endothelin binding:		
IC ₅₀ (μм)		
Cow aorta	3	90
Rat hippocampus	2	25

Table 1. Physico-chemical and biochemical characteristics of 4 and 5.

sh: Shoulder.

^a Whatman Partisil 5 ODS-3, 4.6×100 mm; MeOH - H₂O (45:55); flow rate, 1 ml/minute; 40°C; UV monitor at 215 nm.

injections on a Separations Technology C-18 column (7.6 \times 91 cm, 0.02 mm particle size) using 55% MeOH (aq) as the mobile phase for elution at 200 ml/minute and room temperature, monitoring the effluent at 270 nm. This step afforded, in order of elution, 0.66g of enriched 5, 0.19g of homogeneous 4, 16g of 2 and 1.47g of 3 at elution volumes of 9.2~11.5, 17.4~19.2, 22.5~30.7 and 39.0~47.7 liters, respectively. Thus, using the present procedure, 2, 3 and 4 can be isolated in two chromatographic steps from whole broth.

The above fraction enriched in 5 was purified as one sample on a Whatman Partisil 10 ODS-3 column $(2.21 \times 50 \text{ cm})$. Elution was performed with 45% MeOH (aq) at 15 ml/minute and room temperature. The effluent was monitored at 215 nm. Homogeneous 5 (0.49 g) was recovered from elution volumes of 480 ~ 675 ml.

Physico-chemical analyses were performed using methods previously described. The physico-chemical characteristics of 4 and 5 are summarized in Table 1.

Comparison of ¹H and ¹³C NMR data (DMSO- d_6 and CD₃OD) with those reported for 1, 2 and 3 suggested that 4 and 5 are new members of the cochinmicin family. Of importance, stereochemically both 4 and 5 are 2-like rather than 3-like. In addition, both 4 and 5, like 2, are dextrorotatory. Structures of the new members were determined by methods described previously.

Using the α -methylbenzyl isothiocyanate method described earlier²⁾, the total hydrolysate of **4** showed the presence of D-Ser, D-*allo*-Thr, L-dihydroxyphenylglycine, D-dihydroxyphenylglycine, L-Phe and D-Phe. D-Ala was absent. A D-Ser replacement of D-Ala accounted for an increase of 16 mass units

of 4 from 2. 4 possesses ¹H NMR (DMSO- d_6 , 300 MHz) chemical shifts at δ 1.11 (d, J=6.5 Hz, 3H, D-allo-Thr H_{ν}), 3.71 (br s, 2H, D-Ser H_{β}), 4.02 (dd, J=5.5, 4.5 Hz, 1H, D-Ser H_a), and pyrrole protons at 6.03 (d, J=4 Hz, 1H), 6.90 (d, J=4 Hz, 1H) and 12.21 (brs, NH) ppm. The ¹³C NMR spectra of 4 (DMSO-d₆, 75 MHz, coupled, decoupled and APT) showed a quartet at δ 16.6, three triplets at δ 37.1, 38.2 and 60.4, twenty four doublets at δ 53.7, 54.9, 55.7, 56.4, 56.7, 58.4, 70.7, 102.0, $102.2, 106.5(2 \times), 107.1(2 \times), 111.7, 126.26, 126.35,$ $128.0(2 \times), 128.2(2 \times), 129.1(2 \times) \text{ and } 129.2(2 \times),$ and seventeen singlets at δ 117.2, 125.8, 136.9, 137.8, 138.4, 139.4, 158.1 (2×), 158.2 (2×), 159.1, 168.3, 168.5, 169.0, 170.0, 171.4, 171.5 ppm. These data for 4 are consistent with assigning it as [D-Ser⁵]2.

5 is identical (HPLC retention time, ^{1}H and ^{13}C NMR, UV, IR and MS) to semisynthetic deschloro-2, obtained from catalytic hydrogenation of 2 using an analogous method reported for the conversion of 3 to 1^{1}). The ¹H NMR spectrum (DMSO- d_6 , 300 MHz) of 5 revealed chemical shifts for pyrrole protons at δ 6.06 (dd, 1H, J=2.4, 6 Hz), 6.82 (m, 1H), 6.89 (m, 1H), and δ 11.40 (br d, J = 1.8 Hz, NH)ppm. The ¹³C NMR spectra of 5 (DMSO- d_6 , 75 MHz, coupled, decoupled and APT) showed quartets at δ 16.6 and 16.9, two triplets at δ 36.7 and 38.0, twenty six doublets at δ 51.9, 53.9, 55.0, 55.8, 56.1, 56.2, 70.7, 101.9, 102.1, 106.6 (2 ×), 106.9 (2 ×), 108.6, 110.7, 121.5, 126.2, 126.3, 128.0 (2×), 128.2 $(2\times)$, 129.1 $(2\times)$ and 129.2 $(2\times)$, and sixteen singlets at δ 125.8, 137.0, 138.0, 138.3, 139.7, 158.0 $(2 \times)$, 158.2 $(2 \times)$, 160.2, 168.4, 168.7, 168.9, 171.2, 171.7 and 172.3 ppm.

The $[^{125}I]$ endothelin binding data for 4 and 5,

obtained by methods described previously, is also summarized in Table 1. 4 showed comparable 2-like affinities, which are significantly weaker than 1 and 3 for both ET-A and ET-B sites. 5 is the least active member. These observations further corroborate with the notion that the S stereochemistry at the carbon marked * (*i.e.* L-dihydroxyphenylglycine) and chloro substitution at the 5-position in the pyrrole is deleterious to inhibiting endothelin binding.

At a 20 μ g/disc level, **4** and **5** do not exhibit any antimicrobial activity against *Bacillus subtilis* (ATCC 6633), *Staphylococcus aureus* (ATCC 6538P), *Micrococcus luteus* (ATCC 9341), *Escherichia coli* (ATCC 9637), *Proteus vulgaris* (ATCC 21100), *Pseudomonas aeruginosa* (ATCC 25619), *Cochliobolus miyabeanus* (ATCC 11608) and *Acholeplasma laidlawii* (ATCC 23206).

Acknowledgments

The authors would like to thank Ms. N. W. LEE for antimicorobial tests.

References

- LAM, Y. K. T.; D. L. WILLIAMS, Jr., J. M. SIGMUND, M. SANCHEZ, O. GENILLOUD, Y. L. KONG, S. STEVENS-MILES, L. HUANG & G. M. GARRITY: Cochinmicins, novel and potent cyclodepsipeptide endothelin antagonists from a *Microbispora* sp. I. Production, isolation, and characterization. J. Antibiotics 45: 1709~1716, 1992
- ZINK, D.; O. HENSENS, Y. K. T. LAM, R. REAMER & J. M. LIESCH: Cochinmicins, novel and potent cyclodepsipeptide endothelin antagonists from a *Microbispora* sp. II. Structure determination. J. Antibiotics 45: 1717~1722, 1992